
Figure 3: Solid lines = forward pass, dashed lines =
gradient flow in backprop; we stop gradient at (1) and
(2) for the two ablations.

Policy Gradient Reinforce: In order to directly optimize the sentence-level 
test metrics (as opposed to cross-entropy loss), we use a policy gradient 
approach where the training objective is to minimize the negative expected 
reward function. Following Paulus et al. (2018), we also ensure the 
readability and fluency of the generated summary via a mixed loss function, 
which is a weighted combination of the cross-entropy and RL losses:

Closed-Book Training to Improve Summarization Encoder Memory
Yichen Jiang and Mohit Bansal

In this paper, we aim to improve the memorization ability of the 
encoder of a pointer-generator model by adding an additional 
‘closed-book’ decoder without attention/pointer mechanisms. 
• Intuition: Such a decoder forces the encoder to be more 

selective in the information encoded in its memory state 
because the decoder can’t rely on the extra information 
provided by the attention and possibly copy modules.

We demonstrate our model’s superiority to the pointer-generator 
baseline and prove that our encoder does learn stronger 
memory representations by showing that our 2-decoder model 
achieves the following improvements:
• Statistically significant improvements on the ROUGE and 

METEOR, for both cross-entropy and reinforced setups (and 
on human evaluation), on CNN/DM and Newsroom datasets. 

• Higher scores in a test-only DUC-2002 generalizability setup. 
• Extensive analysis shows better results in a memory-ability 

test, two saliency metrics, and several sanity-check ablations.

Abstract

Pointer-Generator Baseline: Our abstractive text 
summarization model is a simple sequence-to-sequence single-
layer bidirectional encoder and unidirectional decoder LSTM-
RNN, with attention (Bahdanau et al., 2015), pointer-copy, and 
coverage mechanisms (See et al., 2017). The generation 
probability is the sum of copy-from-source probability and 
generate-from-vocabulary probability, weighted by         .

2-Decoder Model: To enhance encoder’s memory, we add a 
closed-book decoder, which is a uni-directional LSTM decoder 
without attention/pointer layer. The two decoders share a single 
encoder and word-embedding matrix, while out-of-vocabulary 
(OOV) words are simply represented as [UNK] for the closed-
book decoder. The entire 2-decoder model is represented in 
Figure 1. During training, we optimize the weighted sum of 
negative log likelihoods from the two decoders:

where                       is the generation probability from the closed-
book decoder. 

www.jiang-yichen.io, www.cs.unc.edu/~mbansal

Table 9: Saliency scores based on 
cloze blank-filling task & keyword-detection
(Pasunuru & Bansal, 2018). 

Memory-Similarity Test: Two forward passes to feed entire article 
and GT summary to encoder, and compute cosine-similarity between
the two final memory states. 

Table 8: Model-capacity sanity-check.
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Setup: We use 2 summarization datasets: CNN/Daily Mail and DUC-2002 
(test-only transfer setup). Promising initial improvements on Newsroom.

ROUGE MTR
1 2 L Full

PREVIOUS WORKS
?(Nallapati16) 35.46 13.30 32.65

pg (See17) 36.44 15.66 33.42 16.65
OUR MODELS

pg (baseline) 36.70 15.71 33.74 16.94
pg + cbdec 38.21 16.45 34.70 18.37

RL + pg 37.02 15.79 34.00 17.55
RL + pg + cbdec 38.58 16.57 35.03 18.86

Table 1: ROUGE F1 and METEOR scores (non-

coverage) on CNN/Daily Mail test set of previous
works and our models. ‘pg’ is the pointer-generator
baseline, and ‘pg + cbdec’ is our 2-decoder model with
closed-book decoder(cbdec). The model marked with
? is trained and evaluated on the anonymized version
of the data.

3.3 Reinforcement Learning

In the reinforcement learning setting, our summa-
rization model is the policy network that gener-
ates words to form a summary. Following Paulus
et al. (2018), we use a self-critical policy gradient
training algorithm (Rennie et al., 2016; Williams,
1992) for both our baseline and 2-decoder model.
For each passage, we sample a summary ys =
ws
1:T+1, and greedily generate a summary ŷ =

ŵ1:T+1 by selecting the word with the highest
probability at each step. Then these two sum-
maries are fed to a reward function r, which is the
ROUGE-L scores in our case. The RL loss func-
tion is:

LRL =
1

T

TX

t=1

(r(ŷ)�r(ys)) logP t
attn(w

s
t+1|ws

1:t)

(3)
where the reward for the greedily-generated sum-
mary (r(ŷ)) acts as a baseline to reduce variance.
We train our reinforced model using the mixture
of Eqn. 3 and Eqn. 2, since Paulus et al. (2018)
showed that a pure RL objective would lead to
summaries that receive high rewards but are not
fluent. The final mixed loss function for RL is:
LXE+RL = �LRL+(1��)LXE , where the value
of � is tuned on the validation set.

4 Experimental Setup

We evaluate our models mainly on CNN/Daily

Mail dataset (Hermann et al., 2015; Nallap-
ati et al., 2016), which is a large-scale, long-
paragraph summarization dataset. It has online
news articles (781 tokens or ~40 sentences on av-
erage) with paired human-generated summaries
(56 tokens or 3.75 sentences on average). The

ROUGE MTR
1 2 L Full

PREVIOUS WORKS
pg (See17) 39.53 17.28 36.38 18.72

RL? (Paulus17) 39.87 15.82 36.90
OUR MODELS

pg (baseline) 39.22 17.02 35.95 18.70
pg + cbdec 40.05 17.66 36.73 19.48

RL + pg 39.59 17.18 36.16 19.70
RL + pg + cbdec 40.66 17.87 37.06 20.51

Table 2: ROUGE F1 and METEOR scores (with-

coverage) on the CNN/Daily Mail test set. Cover-
age mechanism (See et al., 2017) is used in all mod-
els except the RL model (Paulus et al., 2018). The
model marked with ? is trained and evaluated on the
anonymized version of the data.

ROUGE MTR
1 2 L Full

pg (See17) 37.22 15.78 33.90 13.69
pg (baseline) 37.15 15.68 33.92 13.65
pg + cbdec 37.59 16.84 34.43 13.82

RL + pg 39.92 16.71 36.13 15.12
RL + pg + cbdec 41.48 18.69 37.71 15.88

Table 3: ROUGE F1 and METEOR scores on DUC-
2002 (test-only transfer setup).

entire dataset has 287,226 training pairs, 13,368
validation pairs and 11,490 test pairs. We use the
same version of data as See et al. (2017), which is
the original text with no preprocessing to replace
named entities. We also use DUC-2002, which
is also a long-paragraph summarization dataset of
news articles. This dataset has 567 articles and
1~2 summaries per article.

All the training details (e.g., vocabulary size,
RNN dimension, optimizer, batch size, learning
rate, etc.) are provided in the supplementary ma-
terials.

5 Results

We first report our evaluation results on
CNN/Daily Mail dataset. As shown in Ta-
ble 1, our 2-decoder model achieves statistically
significant improvements1 upon the pointer-
generator baseline (pg), with +1.51, +0.74, and
+0.96 points advantage in ROUGE-1, ROUGE-2
and ROUGE-L (Lin, 2004), and +1.43 points
advantage in METEOR (Denkowski and Lavie,
2014). In the reinforced setting, our 2-decoder
model still maintains significant (p < 0.001)

1Our improvements in Table 1 are statistically significant
with p < 0.001 (using bootstrapped randomization test with
100k samples (Efron and Tibshirani, 1994)) and have a 95%
ROUGE-significance interval of at most ±0.25.

Table 2: ROUGE F1 and METEOR scores 
(with-coverage) on the CNN/Daily Mail test set.
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Table 1: ROUGE F1 and METEOR scores 
(non-coverage) on CNN/Daily Mail test set.

Reference summary: 
mitchell moffit and greg brown from asapscience present theories. 
different personality traits can vary according to expectations of parents. 
beyoncé, hillary clinton and j. k. rowling are all oldest children.

Pointer-Gen baseline: 
the kardashians are a strong example of a large celebrity family where 
the siblings share very different personality traits.
on asapscience on youtube, the pair discuss how being the first, middle, 
youngest, or an only child affects us.

Pointer-Gen + closed-book decoder: 
the kardashians are a strong example of a large celebrity family where 
the siblings share very different personality traits.
on asapscience on youtube , the pair discuss how being the first, middle, 
youngest, or an only child affects us.
the personality traits are also supposedly affected by whether parents 
have high expectations and how strict they were.

Figure 3: The summary generated by our 2-decoder
model covers salient information (highlighted in red)
mentioned in the reference summary, which is not pre-
sented in the baseline summary.

Model Score
2-Decoder Wins 49
Pointer-Generator Wins 31
Non-distinguishable 20

Table 4: Human evaluation for our 2-decoder model
versus the pointer-generator baseline.

advantage in all metrics over the pointer-generator
baseline.

We further add the coverage mechanism as in
See et al. (2017) to both baseline and 2-decoder
model, and our 2-decoder model (pg + cbdec)
again receives significantly higher2 scores than
the original pointer-generator (pg) from See et al.
(2017) and our own pg baseline, in all ROUGE
and METEOR metrics (see Table 2). In the rein-
forced setting, our 2-decoder model (RL + pg +
cbdec) outperforms our strong RL baseline (RL +
pg) by a considerable margin (stat. significance of
p < 0.001). Fig. 1 and Fig. 3 show two examples
of our 2-decoder model generating summaries that
cover more salient information than those gener-
ated by the pointer-generator baseline (see supple-
mentary materials for more example summaries).

We also evaluate our 2-decoder model with cov-
erage on the DUC-2002 test-only generalizabil-
ity/transfer setup by decoding the entire dataset
with our models pre-trained on CNN/Daily Mail,
again achieving decent improvements (shown in
Table 3) over the single-decoder baseline as well
as See et al. (2017), in both a cross-entropy and a
reinforcement learning setup.

2All our improvements in Table 2 are statistically signif-
icant with p < 0.001, and have a 95% ROUGE-significance
interval of at most ±0.25.

similarity
pg (baseline) 0.817

pg + cbdec (� = 1
2 ) 0.869

pg + cbdec (� = 2
3 ) 0.889

pg + cbdec (� = 5
6 ) 0.872

pg + cbdec (� = 10
11 ) 0.860

Table 5: Cosine-similarity between memory states after
two forward passes.

5.1 Human Evaluation

We also conducted a small-scale human evalu-
ation study by randomly selecting 100 samples
from the CNN/DM test set and then asking human
annotators to rank the baseline summaries versus
the 2-decoder’s summaries (randomly shuffled to
anonymize model identity) according to an over-
all score based on readability (grammar, fluency,
coherence) and relevance (saliency, redundancy,
correctness). As shown in Table 4, our 2-decoder
model outperforms the pointer-generator baseline
(stat. significance of p < 0.03).

6 Analysis

In this section, we present a series of analysis and
tests in order to understand the improvements of
the 2-decoder models reported in the previous sec-
tion, and to prove that it fulfills our intuition that
the closed-book decoder improves the encoder’s
ability to encode salient information in the mem-
ory state.

6.1 Memory Similarity Test

To verify our argument that the closed-book de-
coder improves the encoder’s memory ability, we
design a test to numerically evaluate the represen-
tation power of encoder’s final memory state. We
perform two forward passes for each encoder (2-
decoder versus pointer-generator baseline). For
the first pass, we feed the entire article to the
encoder and collect the final memory state; for
the second pass we feed the ground-truth sum-
mary to the encoder and collect the final mem-
ory state. Then we calculate the cosine similarity
between these two memory-state vectors. For an
optimal summarization model, its encoder’s mem-
ory state after reading the entire article should be
highly similar to its memory state after reading
the ground truth summary (which contains all the
important information), because this shows that
when reading a long passage, the model is only
encoding important information in its memory and

Table 5: Human Evaluation: pairwise comparison 
between our 2-decoder model and See et al. (2017). 
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Figure 2: Our 2-decoder summarization model with a pointer decoder and a closed-book decoder, both sharing a
single encoder (this is during training; next, at inference time, we only employ the memory-enhanced encoder and
the pointer decoder).

is modeled as:

eti = vT tanh(Whhi +Wsst + battn)

ati = softmax(eti); ct =
X

i

atihi
(1)

where v, Wh, Ws, and battn are learnable param-
eters. hi is encoder’s hidden state at ith encoding
step, and st is decoder’s hidden state at tth decod-
ing step. The distribution ati can be seen as the
amount of attention at decode step t towards the
ith encoder state. Therefore, the context vector ct
is the sum of the encoder’s hidden states weighted
by attention distribution at.

At each decoding step, the previous context vec-
tor ct�1 is concatenated with current input xt, and
fed through a non-linear recurrent function along
with the previous hidden state st�1 to produce the
new hidden state st. The context vector ct is then
calculated according to Eqn. 1 and concatenated
with the decoder state st to produce the logits for
the vocabulary distribution Pvocab at decode step t:
P t
vocab = softmax(V2(V1[st, ct]+b1)+b2), where

V1, V2, b1, b2 are learnable parameters. To en-
able copying out-of-vocabulary words from source
text, a pointer similar to Vinyals et al. (2015) is
built upon the attention distribution and controlled
by the generation probability pgen:

ptgen = �(Ucct + Usst + Uxxt + bptr)

P t
attn(w) = ptgenP

t
vocab(w) + (1� ptgen)

X

i:wi=w

ati

where Uc, Us, Ux, and bptr are learnable parame-
ters. xt and st are the input token and decoder’s
state at tth decoding step. � is the sigmoid func-
tion. We can see pgen as a soft gate that controls

the model’s behavior of copying from text with at-
tention distribution ati versus sampling from vo-
cabulary with generation distribution P t

vocab.

3.2 Closed-Book Decoder

As shown in Eqn. 1, the attention distribution ai
depends on decoder’s hidden state st, which is de-
rived from decoder’s memory state ct. If ct does
not encode salient information from the source
text or encodes too much unimportant informa-
tion, the decoder will have a hard time to locate
relevant encoder states with attention. However,
as explained in the introduction, most gradients
are back-propagated through attention layer to the
encoder’s hidden state ht, not directly to the final
memory state, and thus provide little incentive for
the encoder to memorize salient information in ct.

Therefore, to enhance encoder’s memory, we
add a closed-book decoder, which is a unidi-
rectional LSTM decoder without attention/pointer
layer. The two decoders share a single encoder and
word-embedding matrix, while out-of-vocabulary
(OOV) words are simply represented as [UNK]
for the closed-book decoder. The entire 2-decoder
model is represented in Fig. 2. During training, we
optimize the weighted sum of negative log likeli-
hoods from the two decoders:

LXE =
1

T

TX

t=1

� ((1� �) logP t
attn(w|x1:t)

+ � logP t
cbdec(w|x1:t))

(2)

where Pcbdec is the generation probability from the
closed-book decoder. The mix ratio � is tuned on
the validation set.
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rived from decoder’s memory state ct. If ct does
not encode salient information from the source
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tion, the decoder will have a hard time to locate
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as explained in the introduction, most gradients
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encoder’s hidden state ht, not directly to the final
memory state, and thus provide little incentive for
the encoder to memorize salient information in ct.

Therefore, to enhance encoder’s memory, we
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layer. The two decoders share a single encoder and
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for the closed-book decoder. The entire 2-decoder
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model marked with ? is trained and evaluated on the
anonymized version of the data.

ROUGE MTR
1 2 L Full

pg (See17) 37.22 15.78 33.90 13.69
pg (baseline) 37.15 15.68 33.92 13.65
pg + cbdec 37.59 16.84 34.43 13.82

RL + pg 39.92 16.71 36.13 15.12
RL + pg + cbdec 41.48 18.69 37.71 15.88

Table 3: ROUGE F1 and METEOR scores on DUC-
2002 (test-only transfer setup).

entire dataset has 287,226 training pairs, 13,368
validation pairs and 11,490 test pairs. We use the
same version of data as See et al. (2017), which is
the original text with no preprocessing to replace
named entities. We also use DUC-2002, which
is also a long-paragraph summarization dataset of
news articles. This dataset has 567 articles and
1~2 summaries per article.

All the training details (e.g., vocabulary size,
RNN dimension, optimizer, batch size, learning
rate, etc.) are provided in the supplementary ma-
terials.

5 Results

We first report our evaluation results on
CNN/Daily Mail dataset. As shown in Ta-
ble 1, our 2-decoder model achieves statistically
significant improvements1 upon the pointer-
generator baseline (pg), with +1.51, +0.74, and
+0.96 points advantage in ROUGE-1, ROUGE-2
and ROUGE-L (Lin, 2004), and +1.43 points
advantage in METEOR (Denkowski and Lavie,
2014). In the reinforced setting, our 2-decoder
model still maintains significant (p < 0.001)

1Our improvements in Table 1 are statistically significant
with p < 0.001 (using bootstrapped randomization test with
100k samples (Efron and Tibshirani, 1994)) and have a 95%
ROUGE-significance interval of at most ±0.25.

Table 3: ROUGE F1 and METEOR scores on 
DUC-2002 (test-only transfer setup). 

Figure 1: Our 2-decoder model with a pointer decoder and a closed-book decoder sharing a single encoder 
during training; at inference, we only employ the memory-enhanced encoder and the pointer decoder. 
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Figure 2: Our 2-decoder summarization model with a pointer decoder and a closed-book decoder, both sharing a
single encoder (this is during training; next, at inference time, we only employ the memory-enhanced encoder and
the pointer decoder).

is modeled as:

eti = vT tanh(Whhi +Wsst + battn)

ati = softmax(eti); ct =
X

i

atihi
(1)

where v, Wh, Ws, and battn are learnable param-
eters. hi is encoder’s hidden state at ith encoding
step, and st is decoder’s hidden state at tth decod-
ing step. The distribution ati can be seen as the
amount of attention at decode step t towards the
ith encoder state. Therefore, the context vector ct
is the sum of the encoder’s hidden states weighted
by attention distribution at.

At each decoding step, the previous context vec-
tor ct�1 is concatenated with current input xt, and
fed through a non-linear recurrent function along
with the previous hidden state st�1 to produce the
new hidden state st. The context vector ct is then
calculated according to Eqn. 1 and concatenated
with the decoder state st to produce the logits for
the vocabulary distribution Pvocab at decode step t:
P t
vocab = softmax(V2(V1[st, ct]+b1)+b2), where

V1, V2, b1, b2 are learnable parameters. To en-
able copying out-of-vocabulary words from source
text, a pointer similar to Vinyals et al. (2015) is
built upon the attention distribution and controlled
by the generation probability pgen:

ptgen = �(Ucct + Usst + Uxxt + bptr)

P t
attn(w) = ptgenP

t
vocab(w) + (1� ptgen)

X

i:wi=w

ati

where Uc, Us, Ux, and bptr are learnable parame-
ters. xt and st are the input token and decoder’s
state at tth decoding step. � is the sigmoid func-
tion. We can see pgen as a soft gate that controls

the model’s behavior of copying from text with at-
tention distribution ati versus sampling from vo-
cabulary with generation distribution P t

vocab.

3.2 Closed-Book Decoder

As shown in Eqn. 1, the attention distribution ai
depends on decoder’s hidden state st, which is de-
rived from decoder’s memory state ct. If ct does
not encode salient information from the source
text or encodes too much unimportant informa-
tion, the decoder will have a hard time to locate
relevant encoder states with attention. However,
as explained in the introduction, most gradients
are back-propagated through attention layer to the
encoder’s hidden state ht, not directly to the final
memory state, and thus provide little incentive for
the encoder to memorize salient information in ct.

Therefore, to enhance encoder’s memory, we
add a closed-book decoder, which is a unidi-
rectional LSTM decoder without attention/pointer
layer. The two decoders share a single encoder and
word-embedding matrix, while out-of-vocabulary
(OOV) words are simply represented as [UNK]
for the closed-book decoder. The entire 2-decoder
model is represented in Fig. 2. During training, we
optimize the weighted sum of negative log likeli-
hoods from the two decoders:

LXE =
1

T

TX

t=1

� ((1� �) logP t
attn(w|x1:t)

+ � logP t
cbdec(w|x1:t))

(2)

where Pcbdec is the generation probability from the
closed-book decoder. The mix ratio � is tuned on
the validation set.

ROUGE MTR
1 2 L Full

PREVIOUS WORKS
?(Nallapati16) 35.46 13.30 32.65

pg (See17) 36.44 15.66 33.42 16.65
OUR MODELS

pg (baseline) 36.70 15.71 33.74 16.94
pg + cbdec 38.21 16.45 34.70 18.37

RL + pg 37.02 15.79 34.00 17.55
RL + pg + cbdec 38.58 16.57 35.03 18.86

Table 1: ROUGE F1 and METEOR scores (non-

coverage) on CNN/Daily Mail test set of previous
works and our models. ‘pg’ is the pointer-generator
baseline, and ‘pg + cbdec’ is our 2-decoder model with
closed-book decoder(cbdec). The model marked with
? is trained and evaluated on the anonymized version
of the data.

3.3 Reinforcement Learning

In the reinforcement learning setting, our summa-
rization model is the policy network that gener-
ates words to form a summary. Following Paulus
et al. (2018), we use a self-critical policy gradient
training algorithm (Rennie et al., 2016; Williams,
1992) for both our baseline and 2-decoder model.
For each passage, we sample a summary ys =
ws
1:T+1, and greedily generate a summary ŷ =

ŵ1:T+1 by selecting the word with the highest
probability at each step. Then these two sum-
maries are fed to a reward function r, which is the
ROUGE-L scores in our case. The RL loss func-
tion is:

LRL =
1

T

TX

t=1

(r(ŷ)�r(ys)) logP t
attn(w

s
t+1|ws

1:t)

(3)
where the reward for the greedily-generated sum-
mary (r(ŷ)) acts as a baseline to reduce variance.
We train our reinforced model using the mixture
of Eqn. 3 and Eqn. 2, since Paulus et al. (2018)
showed that a pure RL objective would lead to
summaries that receive high rewards but are not
fluent. The final mixed loss function for RL is:
LXE+RL = �LRL+(1��)LXE , where the value
of � is tuned on the validation set.

4 Experimental Setup

We evaluate our models mainly on CNN/Daily

Mail dataset (Hermann et al., 2015; Nallap-
ati et al., 2016), which is a large-scale, long-
paragraph summarization dataset. It has online
news articles (781 tokens or ~40 sentences on av-
erage) with paired human-generated summaries
(56 tokens or 3.75 sentences on average). The

ROUGE MTR
1 2 L Full

PREVIOUS WORKS
pg (See17) 39.53 17.28 36.38 18.72

RL? (Paulus17) 39.87 15.82 36.90
OUR MODELS

pg (baseline) 39.22 17.02 35.95 18.70
pg + cbdec 40.05 17.66 36.73 19.48

RL + pg 39.59 17.18 36.16 19.70
RL + pg + cbdec 40.66 17.87 37.06 20.51

Table 2: ROUGE F1 and METEOR scores (with-

coverage) on the CNN/Daily Mail test set. Cover-
age mechanism (See et al., 2017) is used in all mod-
els except the RL model (Paulus et al., 2018). The
model marked with ? is trained and evaluated on the
anonymized version of the data.

ROUGE MTR
1 2 L Full

pg (See17) 37.22 15.78 33.90 13.69
pg (baseline) 37.15 15.68 33.92 13.65
pg + cbdec 37.59 16.84 34.43 13.82

RL + pg 39.92 16.71 36.13 15.12
RL + pg + cbdec 41.48 18.69 37.71 15.88

Table 3: ROUGE F1 and METEOR scores on DUC-
2002 (test-only transfer setup).

entire dataset has 287,226 training pairs, 13,368
validation pairs and 11,490 test pairs. We use the
same version of data as See et al. (2017), which is
the original text with no preprocessing to replace
named entities. We also use DUC-2002, which
is also a long-paragraph summarization dataset of
news articles. This dataset has 567 articles and
1~2 summaries per article.

All the training details (e.g., vocabulary size,
RNN dimension, optimizer, batch size, learning
rate, etc.) are provided in the supplementary ma-
terials.

5 Results

We first report our evaluation results on
CNN/Daily Mail dataset. As shown in Ta-
ble 1, our 2-decoder model achieves statistically
significant improvements1 upon the pointer-
generator baseline (pg), with +1.51, +0.74, and
+0.96 points advantage in ROUGE-1, ROUGE-2
and ROUGE-L (Lin, 2004), and +1.43 points
advantage in METEOR (Denkowski and Lavie,
2014). In the reinforced setting, our 2-decoder
model still maintains significant (p < 0.001)

1Our improvements in Table 1 are statistically significant
with p < 0.001 (using bootstrapped randomization test with
100k samples (Efron and Tibshirani, 1994)) and have a 95%
ROUGE-significance interval of at most ±0.25.
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Figure 2: Our 2-decoder summarization model with a pointer decoder and a closed-book decoder, both sharing a
single encoder (this is during training; next, at inference time, we only employ the memory-enhanced encoder and
the pointer decoder).

is modeled as:

eti = vT tanh(Whhi +Wsst + battn)

ati = softmax(eti); ct =
X

i

atihi
(1)

where v, Wh, Ws, and battn are learnable param-
eters. hi is encoder’s hidden state at ith encoding
step, and st is decoder’s hidden state at tth decod-
ing step. The distribution ati can be seen as the
amount of attention at decode step t towards the
ith encoder state. Therefore, the context vector ct
is the sum of the encoder’s hidden states weighted
by attention distribution at.

At each decoding step, the previous context vec-
tor ct�1 is concatenated with current input xt, and
fed through a non-linear recurrent function along
with the previous hidden state st�1 to produce the
new hidden state st. The context vector ct is then
calculated according to Eqn. 1 and concatenated
with the decoder state st to produce the logits for
the vocabulary distribution Pvocab at decode step t:
P t
vocab = softmax(V2(V1[st, ct]+b1)+b2), where

V1, V2, b1, b2 are learnable parameters. To en-
able copying out-of-vocabulary words from source
text, a pointer similar to Vinyals et al. (2015) is
built upon the attention distribution and controlled
by the generation probability pgen:

ptgen = �(Ucct + Usst + Uxxt + bptr)

P t
attn(w) = ptgenP

t
vocab(w) + (1� ptgen)

X

i:wi=w

ati

where Uc, Us, Ux, and bptr are learnable parame-
ters. xt and st are the input token and decoder’s
state at tth decoding step. � is the sigmoid func-
tion. We can see pgen as a soft gate that controls

the model’s behavior of copying from text with at-
tention distribution ati versus sampling from vo-
cabulary with generation distribution P t

vocab.

3.2 Closed-Book Decoder

As shown in Eqn. 1, the attention distribution ai
depends on decoder’s hidden state st, which is de-
rived from decoder’s memory state ct. If ct does
not encode salient information from the source
text or encodes too much unimportant informa-
tion, the decoder will have a hard time to locate
relevant encoder states with attention. However,
as explained in the introduction, most gradients
are back-propagated through attention layer to the
encoder’s hidden state ht, not directly to the final
memory state, and thus provide little incentive for
the encoder to memorize salient information in ct.

Therefore, to enhance encoder’s memory, we
add a closed-book decoder, which is a unidi-
rectional LSTM decoder without attention/pointer
layer. The two decoders share a single encoder and
word-embedding matrix, while out-of-vocabulary
(OOV) words are simply represented as [UNK]
for the closed-book decoder. The entire 2-decoder
model is represented in Fig. 2. During training, we
optimize the weighted sum of negative log likeli-
hoods from the two decoders:

LXE =
1

T

TX

t=1

� ((1� �) logP t
attn(w|x1:t)

+ � logP t
cbdec(w|x1:t))

(2)

where Pcbdec is the generation probability from the
closed-book decoder. The mix ratio � is tuned on
the validation set.

Reference summary: 
mitchell moffit and greg brown from asapscience present theories. 
different personality traits can vary according to expectations of parents. 
beyoncé, hillary clinton and j. k. rowling are all oldest children.

Pointer-Gen baseline: 
the kardashians are a strong example of a large celebrity family where 
the siblings share very different personality traits.
on asapscience on youtube, the pair discuss how being the first, middle, 
youngest, or an only child affects us.

Pointer-Gen + closed-book decoder: 
the kardashians are a strong example of a large celebrity family where 
the siblings share very different personality traits.
on asapscience on youtube , the pair discuss how being the first, middle, 
youngest, or an only child affects us.
the personality traits are also supposedly affected by whether parents 
have high expectations and how strict they were.

Figure 3: The summary generated by our 2-decoder
model covers salient information (highlighted in red)
mentioned in the reference summary, which is not pre-
sented in the baseline summary.

Model Score
2-Decoder Wins 49
Pointer-Generator Wins 31
Non-distinguishable 20

Table 4: Human evaluation for our 2-decoder model
versus the pointer-generator baseline.

advantage in all metrics over the pointer-generator
baseline.

We further add the coverage mechanism as in
See et al. (2017) to both baseline and 2-decoder
model, and our 2-decoder model (pg + cbdec)
again receives significantly higher2 scores than
the original pointer-generator (pg) from See et al.
(2017) and our own pg baseline, in all ROUGE
and METEOR metrics (see Table 2). In the rein-
forced setting, our 2-decoder model (RL + pg +
cbdec) outperforms our strong RL baseline (RL +
pg) by a considerable margin (stat. significance of
p < 0.001). Fig. 1 and Fig. 3 show two examples
of our 2-decoder model generating summaries that
cover more salient information than those gener-
ated by the pointer-generator baseline (see supple-
mentary materials for more example summaries).

We also evaluate our 2-decoder model with cov-
erage on the DUC-2002 test-only generalizabil-
ity/transfer setup by decoding the entire dataset
with our models pre-trained on CNN/Daily Mail,
again achieving decent improvements (shown in
Table 3) over the single-decoder baseline as well
as See et al. (2017), in both a cross-entropy and a
reinforcement learning setup.

2All our improvements in Table 2 are statistically signif-
icant with p < 0.001, and have a 95% ROUGE-significance
interval of at most ±0.25.

similarity
pg (baseline) 0.817

pg + cbdec (� = 1
2 ) 0.869

pg + cbdec (� = 2
3 ) 0.889

pg + cbdec (� = 5
6 ) 0.872

pg + cbdec (� = 10
11 ) 0.860

Table 5: Cosine-similarity between memory states after
two forward passes.

5.1 Human Evaluation

We also conducted a small-scale human evalu-
ation study by randomly selecting 100 samples
from the CNN/DM test set and then asking human
annotators to rank the baseline summaries versus
the 2-decoder’s summaries (randomly shuffled to
anonymize model identity) according to an over-
all score based on readability (grammar, fluency,
coherence) and relevance (saliency, redundancy,
correctness). As shown in Table 4, our 2-decoder
model outperforms the pointer-generator baseline
(stat. significance of p < 0.03).

6 Analysis

In this section, we present a series of analysis and
tests in order to understand the improvements of
the 2-decoder models reported in the previous sec-
tion, and to prove that it fulfills our intuition that
the closed-book decoder improves the encoder’s
ability to encode salient information in the mem-
ory state.

6.1 Memory Similarity Test

To verify our argument that the closed-book de-
coder improves the encoder’s memory ability, we
design a test to numerically evaluate the represen-
tation power of encoder’s final memory state. We
perform two forward passes for each encoder (2-
decoder versus pointer-generator baseline). For
the first pass, we feed the entire article to the
encoder and collect the final memory state; for
the second pass we feed the ground-truth sum-
mary to the encoder and collect the final mem-
ory state. Then we calculate the cosine similarity
between these two memory-state vectors. For an
optimal summarization model, its encoder’s mem-
ory state after reading the entire article should be
highly similar to its memory state after reading
the ground truth summary (which contains all the
important information), because this shows that
when reading a long passage, the model is only
encoding important information in its memory and

Table 6: Cosine-similarity between two 
final memory-states.

ROUGE
1 2 L

pg baseline 37.73 16.52 34.49
pg + ptrdec 37.66 16.50 34.47
pg-2layer 37.92 16.48 34.62

pg-big 38.03 16.71 34.84
pg + cbdec 38.87 16.93 35.38

Table 7: ROUGE F1 and METEOR scores of sanity
check ablations, evaluated on CNN/DM validation set.

ROUGE
1 2 L

� = 0 37.73 16.52 34.49
� = 1/2 38.09 16.71 34.89
� = 2/3 38.87 16.93 35.38

� = 5/6 38.21 16.69 34.81
� = 10/11 37.99 16.39 34.7

Table 8: ROUGE F1 scores on CNN/DM validation
set, of 2-decoder models with different values of the
closed-book-decoder:pointer-decoder mixed loss ratio.

uation results (on the CNN/Daily Mail validation
set) of our 2-decoder models with different closed-
book-decoder:pointer-decoder mixed-loss ratio (�
in Eqn. 2) in Table 8. The model achieves the best
ROUGE and METEOR scores at � = 2

3 . Com-
paring Table 8 with Table 5, we observe a similar
trend between the increasing ROUGE/METEOR
scores and increasing memory cosine-similarities,
which suggests that the performance of a pointer-
generator is strongly correlated with the represen-
tation power of the encoder’s final memory state.

6.3 Saliency and Repetition

Finally, we show that our 2-decoder model can
make use of this better encoder memory state
to summarize more salient information from the
source text, as well as to avoid generating unnec-
essarily lengthy and repeated sentences besides
achieving significant improvements on ROUGE
and METEOR metrics.
Saliency: To evaluate saliency, we design a
keyword-matching test based on the original
CNN/Daily Mail cloze blank-filling task (Her-
mann et al., 2015). Each news article in the dataset
is marked with a few cloze-blank keywords that
represent salient entities, including names, loca-
tions, etc. We count the number of keywords
that appear in our generated summaries, and found
that the output of our best teacher-forcing model
(pg+cbdec with coverage) contains 62.1% of those
keywords, while the output provided by See et al.
(2017) has only 60.4% covered. Our reinforced
2-decoder model (RL + pg + cbdec) further in-
creases this percentage to 66.2%. The full com-

saliency 1 saliency 2
pg (See17) 60.4% 27.95%

our pg baseline 59.6% 28.95%
pg + cbdec 62.1% 29.97%

RL + pg 62.5% 30.17%
RL + pg + cbdec 66.2% 31.40%

Table 9: Saliency scores based on CNN/Daily Mail

cloze blank-filling task and a keyword-detection ap-
proach (Pasunuru and Bansal, 2018). All models in this
table are trained with coverage loss.

3-gram 4-gram 5-gram sent
pg (baseline) 13.20% 12.32% 11.60% 8.39%
pg + cbdec 9.66% 9.02% 8.55% 6.72%

Table 10: Percentage of repeated 3, 4, 5-grams and sen-
tences in generated summaries.

parison is shown in the first column of Table 9.
We also use the saliency metric in Pasunuru and
Bansal (2018), which finds important words de-
tected via a keyword classifier (trained on the
SQuAD dataset (Rajpurkar et al., 2016)). The
results are shown in the second column of Ta-
ble 9. Both saliency tests again demonstrate our
2-decoder model’s ability to memorize important
information and address them properly in the gen-
erated summary. Fig. 1 and Fig. 3 show two ex-
amples of summaries generated by our 2-decoder
model compared to baseline summaries.
Summary Length: On average, summaries gen-
erated by our 2-decoder model have 66.42 words
per summary, while the pointer-generator-baseline
summaries have 65.88 words per summary (and
the same effect holds true for RL models, where
there is less than 1-word difference in average
length). This shows that our 2-decoder model is
able to achieve higher saliency with similar-length
summaries (i.e., it is not capturing more salient
content simply by generating longer summaries).
Repetition: We observe that out 2-decoder
model can generate summaries that are less re-
dundant compared to the baseline, when both
models are not trained with coverage mecha-
nism. Table 10 shows the percentage of re-
peated n-grams/sentences in summaries gener-
ated by the pointer-generator baseline and our 2-
decoder model.
Abstractiveness: Abstractiveness is another ma-
jor challenge for current abstractive summariza-
tion models other than saliency. Since our base-
line is an abstractive model, we measure the per-
centage of novel n-grams (n=2, 3, 4) in our gener-
ated summaries, and find that our 2-decoder model
generates 1.8%, 4.8%, 7.6% novel n-grams while

Table 7: Fixed-encoder & Gradient-cut ablations.

Sanity Checks:

Saliency and Repetition:
ROUGE

1 2 L
pg baseline 37.73 16.52 34.49
pg + ptrdec 37.66 16.50 34.47
pg-2layer 37.92 16.48 34.62

pg-big 38.03 16.71 34.84
pg + cbdec 38.87 16.93 35.38

Table 7: ROUGE F1 and METEOR scores of sanity
check ablations, evaluated on CNN/DM validation set.

ROUGE
1 2 L

� = 0 37.73 16.52 34.49
� = 1/2 38.09 16.71 34.89
� = 2/3 38.87 16.93 35.38

� = 5/6 38.21 16.69 34.81
� = 10/11 37.99 16.39 34.7

Table 8: ROUGE F1 scores on CNN/DM validation
set, of 2-decoder models with different values of the
closed-book-decoder:pointer-decoder mixed loss ratio.

uation results (on the CNN/Daily Mail validation
set) of our 2-decoder models with different closed-
book-decoder:pointer-decoder mixed-loss ratio (�
in Eqn. 2) in Table 8. The model achieves the best
ROUGE and METEOR scores at � = 2

3 . Com-
paring Table 8 with Table 5, we observe a similar
trend between the increasing ROUGE/METEOR
scores and increasing memory cosine-similarities,
which suggests that the performance of a pointer-
generator is strongly correlated with the represen-
tation power of the encoder’s final memory state.

6.3 Saliency and Repetition

Finally, we show that our 2-decoder model can
make use of this better encoder memory state
to summarize more salient information from the
source text, as well as to avoid generating unnec-
essarily lengthy and repeated sentences besides
achieving significant improvements on ROUGE
and METEOR metrics.
Saliency: To evaluate saliency, we design a
keyword-matching test based on the original
CNN/Daily Mail cloze blank-filling task (Her-
mann et al., 2015). Each news article in the dataset
is marked with a few cloze-blank keywords that
represent salient entities, including names, loca-
tions, etc. We count the number of keywords
that appear in our generated summaries, and found
that the output of our best teacher-forcing model
(pg+cbdec with coverage) contains 62.1% of those
keywords, while the output provided by See et al.
(2017) has only 60.4% covered. Our reinforced
2-decoder model (RL + pg + cbdec) further in-
creases this percentage to 66.2%. The full com-

saliency 1 saliency 2
pg (See17) 60.4% 27.95%

our pg baseline 59.6% 28.95%
pg + cbdec 62.1% 29.97%

RL + pg 62.5% 30.17%
RL + pg + cbdec 66.2% 31.40%

Table 9: Saliency scores based on CNN/Daily Mail

cloze blank-filling task and a keyword-detection ap-
proach (Pasunuru and Bansal, 2018). All models in this
table are trained with coverage loss.

3-gram 4-gram 5-gram sent
pg (baseline) 13.20% 12.32% 11.60% 8.39%
pg + cbdec 9.66% 9.02% 8.55% 6.72%

Table 10: Percentage of repeated 3, 4, 5-grams and sen-
tences in generated summaries.

parison is shown in the first column of Table 9.
We also use the saliency metric in Pasunuru and
Bansal (2018), which finds important words de-
tected via a keyword classifier (trained on the
SQuAD dataset (Rajpurkar et al., 2016)). The
results are shown in the second column of Ta-
ble 9. Both saliency tests again demonstrate our
2-decoder model’s ability to memorize important
information and address them properly in the gen-
erated summary. Fig. 1 and Fig. 3 show two ex-
amples of summaries generated by our 2-decoder
model compared to baseline summaries.
Summary Length: On average, summaries gen-
erated by our 2-decoder model have 66.42 words
per summary, while the pointer-generator-baseline
summaries have 65.88 words per summary (and
the same effect holds true for RL models, where
there is less than 1-word difference in average
length). This shows that our 2-decoder model is
able to achieve higher saliency with similar-length
summaries (i.e., it is not capturing more salient
content simply by generating longer summaries).
Repetition: We observe that out 2-decoder
model can generate summaries that are less re-
dundant compared to the baseline, when both
models are not trained with coverage mecha-
nism. Table 10 shows the percentage of re-
peated n-grams/sentences in summaries gener-
ated by the pointer-generator baseline and our 2-
decoder model.
Abstractiveness: Abstractiveness is another ma-
jor challenge for current abstractive summariza-
tion models other than saliency. Since our base-
line is an abstractive model, we measure the per-
centage of novel n-grams (n=2, 3, 4) in our gener-
ated summaries, and find that our 2-decoder model
generates 1.8%, 4.8%, 7.6% novel n-grams while

ROUGE
1 2 L

pg baseline 37.73 16.52 34.49
pg + ptrdec 37.66 16.50 34.47
pg-2layer 37.92 16.48 34.62

pg-big 38.03 16.71 34.84
pg + cbdec 38.87 16.93 35.38

Table 7: ROUGE F1 and METEOR scores of sanity
check ablations, evaluated on CNN/DM validation set.

ROUGE
1 2 L

� = 0 37.73 16.52 34.49
� = 1/2 38.09 16.71 34.89
� = 2/3 38.87 16.93 35.38

� = 5/6 38.21 16.69 34.81
� = 10/11 37.99 16.39 34.7

Table 8: ROUGE F1 scores on CNN/DM validation
set, of 2-decoder models with different values of the
closed-book-decoder:pointer-decoder mixed loss ratio.

uation results (on the CNN/Daily Mail validation
set) of our 2-decoder models with different closed-
book-decoder:pointer-decoder mixed-loss ratio (�
in Eqn. 2) in Table 8. The model achieves the best
ROUGE and METEOR scores at � = 2

3 . Com-
paring Table 8 with Table 5, we observe a similar
trend between the increasing ROUGE/METEOR
scores and increasing memory cosine-similarities,
which suggests that the performance of a pointer-
generator is strongly correlated with the represen-
tation power of the encoder’s final memory state.

6.3 Saliency and Repetition

Finally, we show that our 2-decoder model can
make use of this better encoder memory state
to summarize more salient information from the
source text, as well as to avoid generating unnec-
essarily lengthy and repeated sentences besides
achieving significant improvements on ROUGE
and METEOR metrics.
Saliency: To evaluate saliency, we design a
keyword-matching test based on the original
CNN/Daily Mail cloze blank-filling task (Her-
mann et al., 2015). Each news article in the dataset
is marked with a few cloze-blank keywords that
represent salient entities, including names, loca-
tions, etc. We count the number of keywords
that appear in our generated summaries, and found
that the output of our best teacher-forcing model
(pg+cbdec with coverage) contains 62.1% of those
keywords, while the output provided by See et al.
(2017) has only 60.4% covered. Our reinforced
2-decoder model (RL + pg + cbdec) further in-
creases this percentage to 66.2%. The full com-

saliency 1 saliency 2
pg (See17) 60.4% 27.95%

our pg baseline 59.6% 28.95%
pg + cbdec 62.1% 29.97%

RL + pg 62.5% 30.17%
RL + pg + cbdec 66.2% 31.40%

Table 9: Saliency scores based on CNN/Daily Mail

cloze blank-filling task and a keyword-detection ap-
proach (Pasunuru and Bansal, 2018). All models in this
table are trained with coverage loss.

3-gram 4-gram 5-gram sent
pg (baseline) 13.20% 12.32% 11.60% 8.39%
pg + cbdec 9.66% 9.02% 8.55% 6.72%

Table 10: Percentage of repeated 3, 4, 5-grams and sen-
tences in generated summaries.

parison is shown in the first column of Table 9.
We also use the saliency metric in Pasunuru and
Bansal (2018), which finds important words de-
tected via a keyword classifier (trained on the
SQuAD dataset (Rajpurkar et al., 2016)). The
results are shown in the second column of Ta-
ble 9. Both saliency tests again demonstrate our
2-decoder model’s ability to memorize important
information and address them properly in the gen-
erated summary. Fig. 1 and Fig. 3 show two ex-
amples of summaries generated by our 2-decoder
model compared to baseline summaries.
Summary Length: On average, summaries gen-
erated by our 2-decoder model have 66.42 words
per summary, while the pointer-generator-baseline
summaries have 65.88 words per summary (and
the same effect holds true for RL models, where
there is less than 1-word difference in average
length). This shows that our 2-decoder model is
able to achieve higher saliency with similar-length
summaries (i.e., it is not capturing more salient
content simply by generating longer summaries).
Repetition: We observe that out 2-decoder
model can generate summaries that are less re-
dundant compared to the baseline, when both
models are not trained with coverage mecha-
nism. Table 10 shows the percentage of re-
peated n-grams/sentences in summaries gener-
ated by the pointer-generator baseline and our 2-
decoder model.
Abstractiveness: Abstractiveness is another ma-
jor challenge for current abstractive summariza-
tion models other than saliency. Since our base-
line is an abstractive model, we measure the per-
centage of novel n-grams (n=2, 3, 4) in our gener-
ated summaries, and find that our 2-decoder model
generates 1.8%, 4.8%, 7.6% novel n-grams while

Table 10: Percentage of repeated 3,4,5-
grams & sentences in generated summaries. 
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Figure 2: Reinforced (mixed-loss) video captioning using entailment-corrected CIDEr score as reward.

ward only when it is a directed match with (i.e., it

is logically implied by) the ground truth caption,

hence avoiding contradictory or unrelated infor-

mation (e.g., see Fig. 1). Empirically, we show

that first the CIDEr-reward model achieves signif-

icant improvements over the cross-entropy base-

line (on multiple datasets, and automatic and hu-

man evaluation); next, the CIDEnt-reward model

further achieves significant improvements over the

CIDEr-based reward. Overall, we achieve the new

state-of-the-art on the MSR-VTT dataset.

2 Related Work

Past work has presented several sequence-to-

sequence models for video captioning, using at-

tention, hierarchical RNNs, 3D-CNN video fea-

tures, joint embedding spaces, language fusion,

etc., but using word-level cross entropy loss train-

ing (Venugopalan et al., 2015a; Yao et al., 2015;

Pan et al., 2016a,b; Venugopalan et al., 2016).

Policy gradient for image captioning was re-

cently presented by Ranzato et al. (2016), using

a mixed sequence level training paradigm to use

non-differentiable evaluation metrics as rewards.1

Liu et al. (2016b) and Rennie et al. (2016) improve

upon this using Monte Carlo roll-outs and a test in-

ference baseline, respectively. Paulus et al. (2017)

presented summarization results with ROUGE re-

wards, in a mixed-loss setup.

Recognizing Textual Entailment (RTE) is a tra-

ditional NLP task (Dagan et al., 2006; Lai and

Hockenmaier, 2014; Jimenez et al., 2014), boosted

by a large dataset (SNLI) recently introduced

by Bowman et al. (2015). There have been several

leaderboard models on SNLI (Cheng et al., 2016;

Rocktäschel et al., 2016); we focus on the decom-

posable, intra-sentence attention model of Parikh

et al. (2016). Recently, Pasunuru and Bansal

(2017) used multi-task learning to combine video

captioning with entailment and video generation.

1Several papers have presented the relative comparison of
image captioning metrics, and their pros and cons (Vedantam
et al., 2015; Anderson et al., 2016; Liu et al., 2016b; Hodosh
et al., 2013; Elliott and Keller, 2014).

3 Models

Attention Baseline (Cross-Entropy) Our

attention-based seq-to-seq baseline model is

similar to the Bahdanau et al. (2015) architecture,

where we encode input frame level video features

{f1:n} via a bi-directional LSTM-RNN and then

generate the caption w1:m using an LSTM-RNN

with an attention mechanism. Let θ be the model

parameters and w∗

1:m be the ground-truth caption,

then the cross entropy loss function is:

L(θ) = −
m
∑

t=1

log p(w∗

t |w
∗

1:t−1, f1:n) (1)

where p(wt|w1:t−1, f1:n) = softmax(W Thdt ),
W T is the projection matrix, and wt and hdt are

the generated word and the RNN decoder hidden

state at time step t, computed using the standard

RNN recursion and attention-based context vector

ct. Details of the attention model are in the sup-

plementary (due to space constraints).

Reinforcement Learning (Policy Gradient) In

order to directly optimize the sentence-level test

metrics (as opposed to the cross-entropy loss

above), we use a policy gradient pθ, where θ rep-

resent the model parameters. Here, our baseline

model acts as an agent and interacts with its envi-

ronment (video and caption). At each time step,

the agent generates a word (action), and the gen-

eration of the end-of-sequence token results in a

reward r to the agent. Our training objective is to

minimize the negative expected reward function:

L(θ) = −Ews
∼pθ [r(w

s)] (2)

where ws is the word sequence sampled from

the model. Based on the REINFORCE algo-

rithm (Williams, 1992), the gradients of this non-

differentiable, reward-based loss function are:

∇θL(θ) = −Ews
∼pθ [r(w

s) ·∇θ log pθ(w
s)] (3)

We follow Ranzato et al. (2016) approximating

the above gradients via a single sampled word

Figure 2: Cosine-similarity between final memory 
states after reading summary and full doc.

Original Text (truncated):  a  family  have  claimed  the  body  of  an  
infant  who  was  discovered  deceased  and  buried  on  a  sydney  
beach  last  year  ,  in  order  to  give  her  a  proper  funeral  .  on  
november  30  ,  2014  ,  two  young  boys  were  playing  on  maroubra  
beach  when  they  uncovered  the  body  of  a  baby  girl  buried  under  
30  centimetres  of  sand  .  now  locals  filomena  d'alessandro  and  
bill  green  have  claimed  the  infant  's  body  in  order  to  provide  
her  with  a  fitting  farewell  .  'we’re  local  and  my  husband  is  a  
police  officer  and  he’s  worked  with  many  of  the  officers  
investigating  it  , '  ms  d'alessandro  told  daily  mail  australia  .  scroll 
down  for  video  .  a  sydney  family  have  claimed  the  body  of  a  
baby  girl  who  was  found  buried  on  maroubra  beach  (  pictured  )  
on  november  30  ,  2014  .  filomena  d'alessandro  and  bill  green  
have  claimed  the  infant  's  remains  ,  who  they  have  named  lily  
grace  ,  in  order  to  provide  her  with  a  fitting  farewell  .  '  above  
all  as  a  mother  i  wanted  to  do  something  for  that  little  girl  ,  '  
she  added  .  since  january  the  couple  ,  who  were  married  last  
year  and  have  three  children  between  them  ,  have  been  trying  to  
claim  the  baby  after  they  heard  police  were  going  to  give  her  
a  '  destitute  burial  '  ... 

Pointer-Generator baseline: 
a sydney family have claimed the body of a baby girl was found buried 
on maroubra beach on november 30 , 2014 .
locals filomena d'alessandro and bill green have claimed the infant 's 
body in order to provide her with a fitting farewell . 
now locals have claimed the infant 's body in order to provide her with 
a fitting farewell .

Pointer-Generator + closed-book decoder:  
two young boys were playing on maroubra beach when they uncovered 
the body of a baby girl buried under 30 centimetres of sand .
now locals filomena d'alessandro and bill green have claimed the 
infant 's body in order to provide her with a fitting farewell .
`above all as a mother i wanted to do something for that little girl ,' she 
added .

Reference summary: 
sydney family claimed the remains of a baby found on maroubra beach .
filomena d'alessandro and bill green have vowed to give her a funeral .
the baby 's body was found by two boys , buried in sand on november 
30 . the infant was found about 20-30 metres from the water 's edge .
police were unable to identify the baby girl or her parents .

Barcelona beat Real Madrid 3-2 claim the Spanish Super Cup
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Figure 2: Our 2-decoder summarization model with a pointer decoder and a closed-book decoder, both sharing a
single encoder (this is during training; next, at inference time, we only employ the memory-enhanced encoder and
the pointer decoder).

is modeled as:

eti = vT tanh(Whhi +Wsst + battn)

ati = softmax(eti); ct =
X

i

atihi
(1)

where v, Wh, Ws, and battn are learnable param-
eters. hi is encoder’s hidden state at ith encoding
step, and st is decoder’s hidden state at tth decod-
ing step. The distribution ati can be seen as the
amount of attention at decode step t towards the
ith encoder state. Therefore, the context vector ct
is the sum of the encoder’s hidden states weighted
by attention distribution at.

At each decoding step, the previous context vec-
tor ct�1 is concatenated with current input xt, and
fed through a non-linear recurrent function along
with the previous hidden state st�1 to produce the
new hidden state st. The context vector ct is then
calculated according to Eqn. 1 and concatenated
with the decoder state st to produce the logits for
the vocabulary distribution Pvocab at decode step t:
P t
vocab = softmax(V2(V1[st, ct]+b1)+b2), where

V1, V2, b1, b2 are learnable parameters. To en-
able copying out-of-vocabulary words from source
text, a pointer similar to Vinyals et al. (2015) is
built upon the attention distribution and controlled
by the generation probability pgen:

ptgen = �(Ucct + Usst + Uxxt + bptr)

P t
attn(w) = ptgenP

t
vocab(w) + (1� ptgen)

X

i:wi=w

ati

where Uc, Us, Ux, and bptr are learnable parame-
ters. xt and st are the input token and decoder’s
state at tth decoding step. � is the sigmoid func-
tion. We can see pgen as a soft gate that controls

the model’s behavior of copying from text with at-
tention distribution ati versus sampling from vo-
cabulary with generation distribution P t

vocab.

3.2 Closed-Book Decoder

As shown in Eqn. 1, the attention distribution ai
depends on decoder’s hidden state st, which is de-
rived from decoder’s memory state ct. If ct does
not encode salient information from the source
text or encodes too much unimportant informa-
tion, the decoder will have a hard time to locate
relevant encoder states with attention. However,
as explained in the introduction, most gradients
are back-propagated through attention layer to the
encoder’s hidden state ht, not directly to the final
memory state, and thus provide little incentive for
the encoder to memorize salient information in ct.

Therefore, to enhance encoder’s memory, we
add a closed-book decoder, which is a unidi-
rectional LSTM decoder without attention/pointer
layer. The two decoders share a single encoder and
word-embedding matrix, while out-of-vocabulary
(OOV) words are simply represented as [UNK]
for the closed-book decoder. The entire 2-decoder
model is represented in Fig. 2. During training, we
optimize the weighted sum of negative log likeli-
hoods from the two decoders:

LXE =
1

T

TX

t=1

� ((1� �) logP t
attn(w|x1:t)

+ � logP t
cbdec(w|x1:t))

(2)

where Pcbdec is the generation probability from the
closed-book decoder. The mix ratio � is tuned on
the validation set.

Model
Results and Ablations

Analysis

Human Evaluation:

Barcelona beat Real Madrid 3-2 claim the Spanish Super Cup
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Reference summary: 
mitchell moffit and greg brown from asapscience present theories. 
different personality traits can vary according to expectations of parents. 
beyoncé, hillary clinton and j. k. rowling are all oldest children.
Pointer-Gen baseline: 
the kardashians are a strong example of a large celebrity family where the 
siblings share very different personality traits ......
Pointer-Gen + closed-book decoder: 
the kardashians are a strong example of a large celebrity family where the 
siblings share very different personality traits ......
the personality traits are also supposedly affected by whether parents have 
high expectations and how strict they were.

ROUGE
1 2 L

pg baseline 37.73 16.52 34.49
pg + ptrdec 37.66 16.50 34.47
pg-2layer 37.92 16.48 34.62

pg-big 38.03 16.71 34.84
pg + cbdec 38.87 16.93 35.38

Table 8: ROUGE F1 scores of sanity check ablations,
evaluated on CNN/DM validation set.

ROUGE
1 2 L

� = 0 37.73 16.52 34.49
� = 1/2 38.09 16.71 34.89
� = 2/3 38.87 16.93 35.38

� = 5/6 38.21 16.69 34.81
� = 10/11 37.99 16.39 34.7

Table 9: ROUGE F1 scores on CNN/DM validation
set, of 2-decoder models with different values of the
closed-book-decoder:pointer-decoder mixed loss ratio.

ters of our 2-decoder model (34.5M versus 34.4M
parameters). Table 8 shows that neither of these
variants can match our 2-decoder model in terms
of ROUGE scores, and hence proves that the im-
provements of our model are indeed because of
the closed-book decoder rather than due to simply
having more parameters.3

Mixed-loss Ratio Ablation: We also present eval-
uation results (on the CNN/Daily Mail validation
set) of our 2-decoder models with different closed-
book-decoder:pointer-decoder mixed-loss ratio (�
in Eqn. 2) in Table 9. The model achieves the best
ROUGE scores at � = 2

3 . Comparing Table 9 with
Table 6, we observe a similar trend between the
increasing ROUGE scores and increasing memory
cosine-similarities, which suggests that the perfor-
mance of a pointer-generator is strongly correlated
with the representation power of the encoder’s fi-
nal memory state.

6.3 Saliency and Repetition

Finally, we show that our 2-decoder model can
make use of this better encoder memory state
to summarize more salient information from the
source text, as well as to avoid generating unnec-
essarily lengthy and repeated sentences besides
achieving significant improvements on ROUGE
and METEOR metrics.
Saliency: To evaluate saliency, we design a
keyword-matching test based on the original

3It is also important to point out that our model is not a 2-
decoder ensemble, because we use only the pointer decoder
during inference. Therefore, the number of parameters used
for inference is the same as the pointer-generator baseline.

saliency 1 saliency 2
pg (See17) 60.4% 27.95%

our pg baseline 59.6% 28.95%
pg + cbdec 62.1% 29.97%

RL + pg 62.5% 30.17%
RL + pg + cbdec 66.2% 31.40%

Table 10: Saliency scores based on CNN/Daily Mail

cloze blank-filling task and a keyword-detection ap-
proach (Pasunuru and Bansal, 2018). All models in this
table are trained with coverage loss.

3-gram 4-gram 5-gram sent
pg (baseline) 13.20% 12.32% 11.60% 8.39%
pg + cbdec 9.66% 9.02% 8.55% 6.72%

Table 11: Percentage of repeated 3, 4, 5-grams and sen-
tences in generated summaries.

CNN/Daily Mail cloze blank-filling task (Her-
mann et al., 2015). Each news article in the dataset
is marked with a few cloze-blank keywords that
represent salient entities, including names, loca-
tions, etc. We count the number of keywords
that appear in our generated summaries, and found
that the output of our best teacher-forcing model
(pg+cbdec with coverage) contains 62.1% of those
keywords, while the output provided by See et al.
(2017) has only 60.4% covered. Our reinforced
2-decoder model (RL + pg + cbdec) further in-
creases this percentage to 66.2%. The full com-
parison is shown in the first column of Table 10.
We also use the saliency metric in Pasunuru and
Bansal (2018), which finds important words de-
tected via a keyword classifier (trained on the
SQuAD dataset (Rajpurkar et al., 2016)). The
results are shown in the second column of Ta-
ble 10. Both saliency tests again demonstrate our
2-decoder model’s ability to memorize important
information and address them properly in the gen-
erated summary. Fig. 1 and Fig. 3 show two ex-
amples of summaries generated by our 2-decoder
model compared to baseline summaries.
Summary Length: On average, summaries gen-
erated by our 2-decoder model have 66.42 words
per summary, while the pointer-generator-baseline
summaries have 65.88 words per summary (and
the same effect holds true for RL models, where
there is less than 1-word difference in average
length). This shows that our 2-decoder model is
able to achieve higher saliency with similar-length
summaries (i.e., it is not capturing more salient
content simply by generating longer summaries).
Repetition: We observe that out 2-decoder
model can generate summaries that are less re-
dundant compared to the baseline, when both

Table 4: Ablation with different 2-decoder mixed-loss
ratios, for CNN/Daily Mail val set.

http://www.jiang-yichen.io/
http://www.cs.unc.edu/~mbansal

